

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Effect of Thermal Activation on the Kinetics of Cd²⁺ Ions Sorption by AlPO₄

Syed Mustafa^a; Muhammad Javid^a; Muhammad Iqbal Zaman^a

^a National Center of Excellence in Physical Chemistry, Peshawar University, Peshawar, Pakistan

To cite this Article Mustafa, Syed , Javid, Muhammad and Zaman, Muhammad Iqbal(2009) 'Effect of Thermal Activation on the Kinetics of Cd²⁺ Ions Sorption by AlPO₄', Separation Science and Technology, 44: 2, 304 – 315

To link to this Article: DOI: 10.1080/01496390802436992

URL: <http://dx.doi.org/10.1080/01496390802436992>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Effect of Thermal Activation on the Kinetics of Cd²⁺ Ions Sorption by AlPO₄

Syed Mustafa, Muhammad Javid, and Muhammad Iqbal Zaman

National Center of Excellence in Physical Chemistry, Peshawar University,
Peshawar, Pakistan

Abstract: The kinetics of Cd²⁺ uptake on two different samples of AlPO₄ activated at 105°C and 400°C is studied as a function temperature, which shows an increase in the optimum time for the maximum uptake of Cd²⁺ ions with activation. The mechanism of the uptake is observed to change from ion exchange to sorption inside the pores with activation. The rate constants calculated from the first order Lagergren's plots are observed to decrease while activation energy, enthalpy, entropy, and free energy of activation are observed to increase with activation. All the activation parameters are found to be higher for the activated AlPO₄ as compared to the non-activated AlPO₄.

Keywords: AlPO₄, ion exchange, kinetics, Point of Zero Charge (PZC) Thermal Activation, sorption

INTRODUCTION

The release of heavy metal ions into water bodies from industries through their discharge streams causes detrimental effects on human health and the environment (1). The ion exchange method had proved its effectiveness in removing these ionic impurities from wastewaters. Due to the broader application of the ion exchange method, organic and inorganic ion exchangers of suitably chosen physiochemical properties were synthesized and had been used extensively (2–4).

Received 10 June 2007; accepted 9 June 2008.

Address correspondence to Syed Mustafa, National Center of Excellence for Physical Chemistry, Peshawar University, Peshawar-25120, Pakistan. Tel.: 0919216766; Fax: 0919216671. E-mail: smustafa49@yahoo.com

From the last few decades' synthetic inorganic ion exchangers like zirconium, titanium, and calcium phosphates have also received much attention due to their unique properties such as thermal and radiation stabilities, resistance to oxidation, and prominent selectivity to certain ions (5–9).

Recently, aluminum(III) phosphate has been found to uptake the metal ions like Cu²⁺, Cd²⁺, Pb²⁺ etc. (10). Aluminum phosphate exists in various amorphous and crystalline forms, possess pH dependent surface charge properties which make it important sink for trace metal ions in the soils (11,12).

The present study deals with the kinetics of the Cd²⁺ ions sorption by AlPO₄ to clarify the mechanism of the uptake process.

METHODS AND MATERIALS

Reagents

All reagents used were analytical grade purchased from MERCK. Nitric acid, potassium hydroxide solutions having concentrations 0.1, 0.5, and 1 M were prepared in doubly distilled water for pH adjustment and standard buffers of pH 2.01 and 11.72 were also prepared in doubly distilled water for pH meter calibration.

AlPO₄ used in the study was synthesized in the laboratory by mixing solutions of aluminum nitrate and trisodium phosphate each 0.5 M in concentration, according to the reaction,

Before starting the reaction, the aluminum nitrate solution was kept stirring in a thermostated water bath at 40°C. After one hour of equilibration tri-sodium phosphate was added dropwise until the pH of the reaction mixture became approximately 5. The reaction mixture was dialyzed with doubly distilled water for ten days. After ten days the suspensions were filtered and were washed with doubly distilled water for a further six days. The wet AlPO₄ was then dried at 105°C, cooled in a desiccators, ground to a fine powder, and passed through a mesh sieve of 80.

Characterization of AlPO₄

A portion of this sample was treated at 400°C in a furnace for 24 hours. The non-activated sample dried at 105°C and the sample activated at 400°C were then characterized by using an X-ray diffractometer model

JD-X-73 with Mn-filtered Cu-K α radiation and FTIR spectrometer model, Perkin Elmer 16pc FTIR.

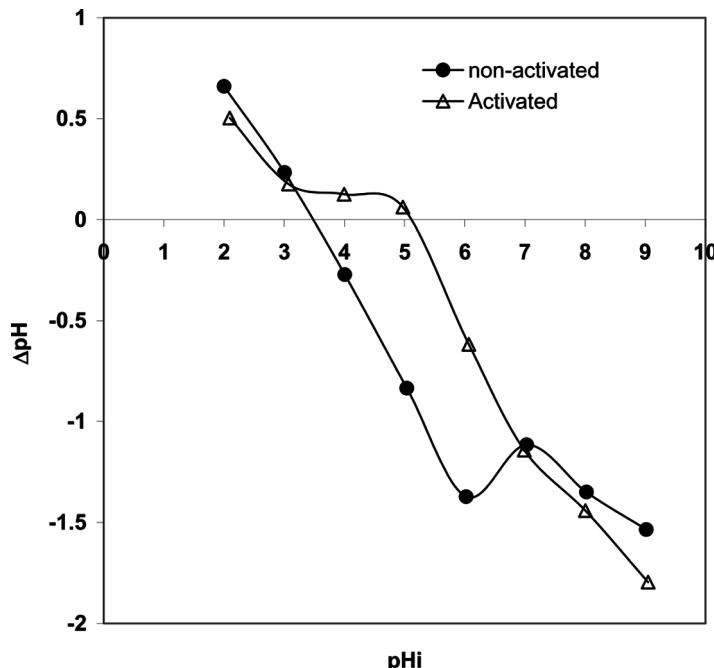
The PZC was determined using the method of Kinniburg et al. (13). The surface area of both the solid powders were also determined by a BET nitrogen adsorption method using the surface area and pore size analyzer, model ST-03.

Kinetics Studies of AlPO₄

The kinetics studies were performed by taking 30 mL of Cd²⁺ ions solution in 0.1 M KNO₃ in different Pyrex glass flasks to which 0.2 g of the solid AlPO₄ was added. The initial pH of the flasks were adjusted to 6 ± 0.05 using a pH meter with combined glass and calomel electrodes and the flasks were kept shaking in a shaker bath at the desired temperature. At various intervals of shaking, the pH of the suspensions was recorded and were filtered. The filtrates were analyzed for the equilibrium concentration of Cd²⁺ ions using an atomic absorption model Perkin Elmer 3100.

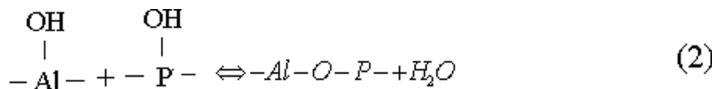
RESULTS AND DISCUSSIONS

X-ray Diffractometry


The X-ray diffraction pattern showed that both the AlPO₄ samples were amorphous in nature and that the activation at 400°C had no effect on the lattice structure of the solid AlPO₄.

Surface Area

The surface area of the powdered AlPO₄ was found to increase with activation from $95 \text{ m}^2 \cdot \text{g}^{-1}$ to $128 \text{ m}^2 \cdot \text{g}^{-1}$. The increase in the surface area is probably due to loss of water molecules from the AlPO₄ matrix with activation at 400°C. The number of water molecules determined by the weight loss method were found to be 3.0 and 1.5 for non-activated and activated AlPO₄ respectively.


Point of Zero Charge

The point of zero charge is determined using 0.1 M KNO₃ at 303 K. The ΔpH plotted vs pH initial is presented in Fig. 1. The pH value

Figure 1. Plot of pH_i vs. ΔpH showing the point of zero charge (PZC) for AlPO₄ at 303 K in the presence of 0.1 M KNO₃.

corresponding to the point of intersection represents the point of zero charge (PZC) which shows that it has increased with activation from 3.45 to 5.1 indicating a decrease in the surface acidity. The loss in acidity is very well correlated with the loss in water molecules, which would lead to a decrease in the concentration of the surface –POH groups.

Kinetics Studies

The kinetics of Cd²⁺ ions sorption by non-activated and activated AlPO₄ are conducted at pH 6 and in the temperature range 303–323 K. The effect of the contact time on Cd²⁺ sorption can be seen from Figs. 2, and 3, where it is observed that the uptake increases with time in both

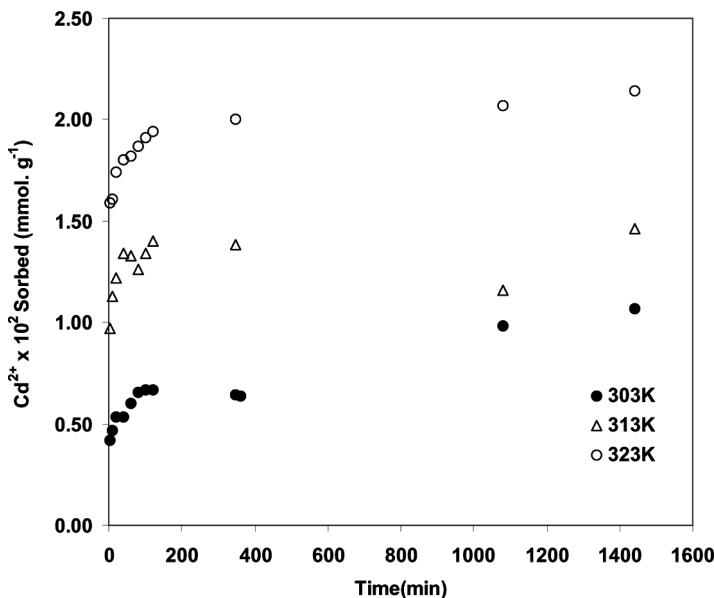


Figure 2. Amount of Cd^{2+} ions sorbed vs. time for non-activated AlPO_4 at pH 6.

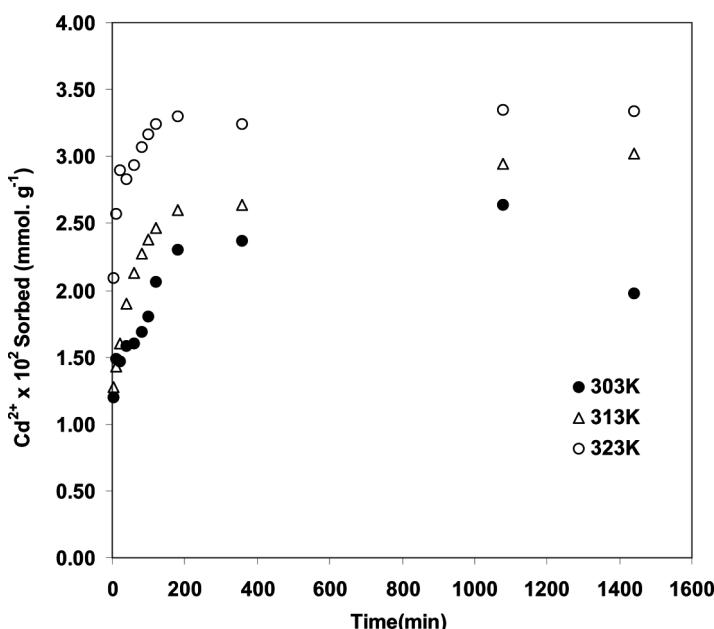
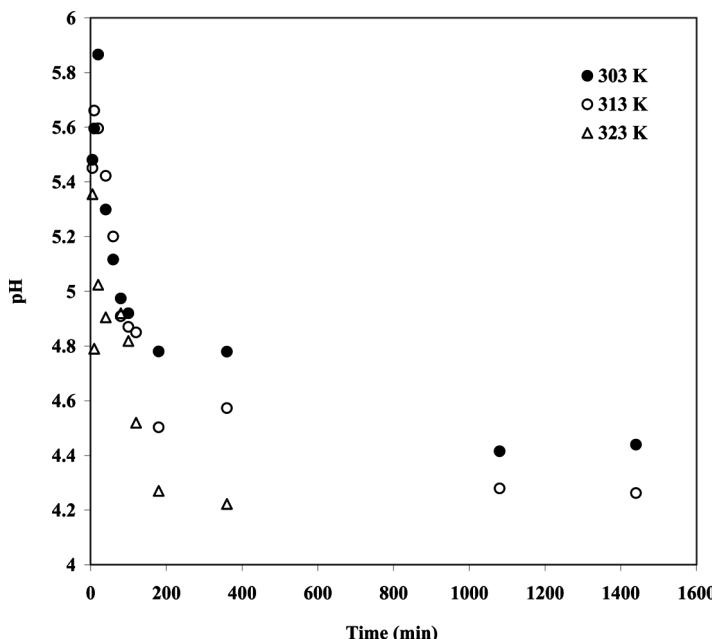
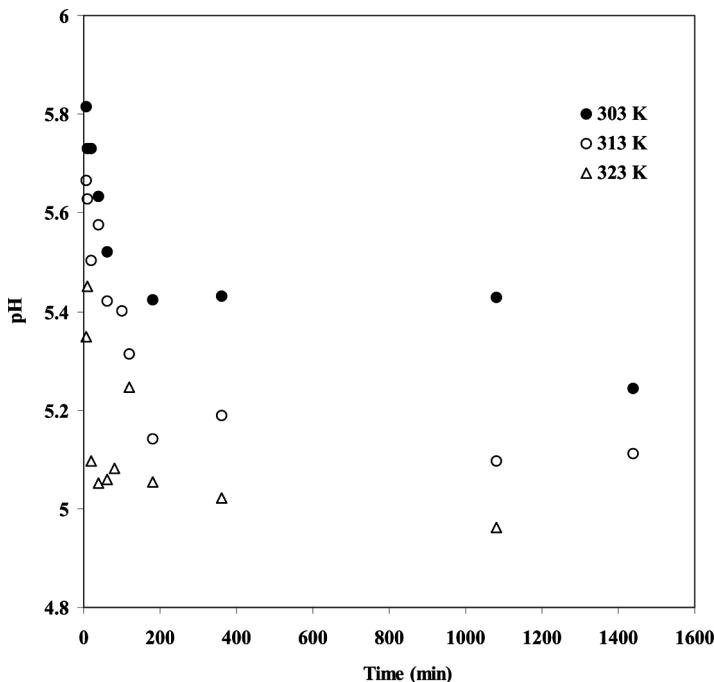



Figure 3. Amount of Cd^{2+} ions sorbed vs. time for activated AlPO_4 at pH 6.


the cases. However, the sorption reaches plateau conditions after almost two hours for non-activated AlPO_4 and three hours for activated AlPO_4 at all the temperatures. The greater time required to reach the equilibrium conditions in case of the activated AlPO_4 shows the change in mechanism of Cd^{2+} ion sorption with activation. This also indicates that the Cd^{2+} uptake by the activated AlPO_4 takes place inside the pores created by the activation.

The adsorption of Cd^{2+} ions is accompanied by the release of H^+ ions to the aqueous phase. As can be seen from Figs. 4, 5 that the equilibrium attainment in H^+ ions release almost coincides with the equilibrium in the Cd^{2+} ions uptake by both the activated and non-activated AlPO_4 . Further, Figs. 4 and 5 reveal that the decrease in pH with increase in Cd^{2+} ions sorption of non-activated AlPO_4 is more prominent as compared to the activated AlPO_4 , indicating that the H^+ exchange in case of the non-activated AlPO_4 is replaced by specific interactions towards Cd^{2+} ions by the activated AlPO_4 according to Schemes 1 and 2.

The rate constant K_u (min^{-1}) of the process were determined by using the well known Lagergren's first order rate equation (14) by

Figure 4. Plot of equilibrium pH vs. time during the kinetics studies of Cd^{2+} ions sorption on non-activated AlPO_4 .

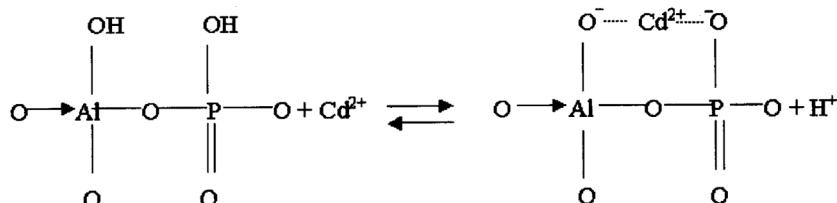
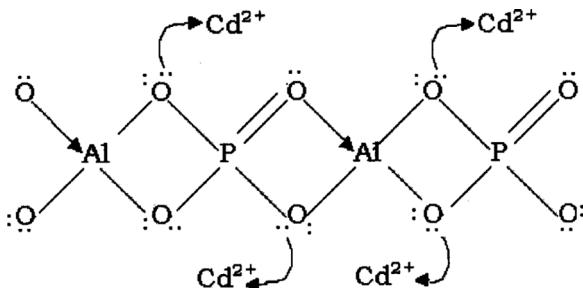


Figure 5. Plot of equilibrium pH vs. time during the kinetics studies of Cd^{2+} ions sorption on activated AlPO_4 .


plotting $\log(qe - q)$ vs. t (minutes) as shown in Figs. 6 and 7 for the Cd^{2+} ion uptake. This equation can be written as,

$$\log(qe - q) = \log qe - \frac{K_u}{2.303} \cdot t \quad (3)$$

where qe and q (both in mmol g^{-1}) are the amounts of Cd^{2+} ions sorbed at equilibrium and at time t respectively. The values of K_u at different temperatures are calculated from the plots and are given in Tables 1, 2.

Scheme 1.

Scheme 2.

The energy of activation of the process is calculated by collecting kinetic data at different temperatures, (303 to 323 K) and applying the Arrhenius equation in the form,

$$\ln K_u = \ln A - \frac{Ea}{RT} \quad (4)$$

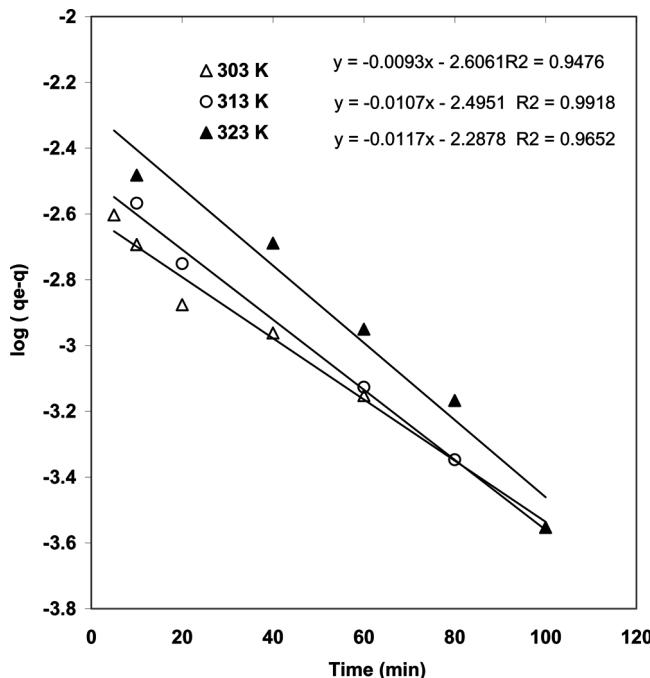
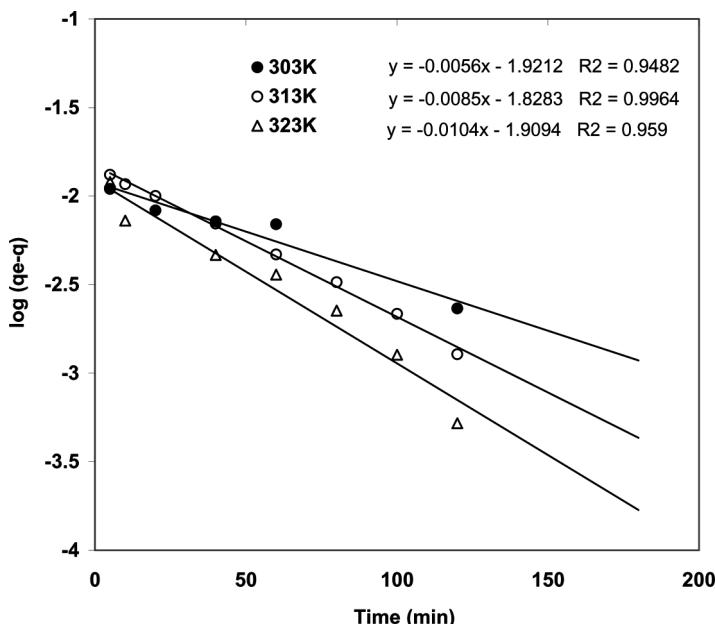



Figure 6. Lagergren's plot of kinetics data of Cd²⁺ ions sorption for non-activated AlPO₄ at pH 6.

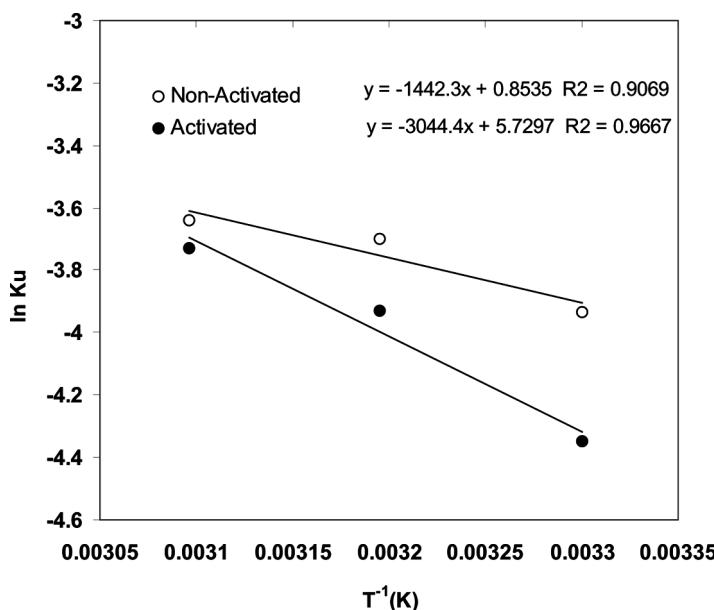
Figure 7. Lagergren's plot of kinetics data of Cd²⁺ ions sorption for activated AlPO₄ at pH 6.

where A is the Arrhenius factor, T is the absolute temperature, and R is the molar gas constant (8.314 J K⁻¹ mol⁻¹).

The plots drawn of $\ln K_u$ vs. $1/T$ are shown in Fig. 8. The E_a value calculated from the slope is greater for the activated AlPO₄ (25.31 kJ mol⁻¹) than observed for the non-activated AlPO₄ (11.99 kJ mol⁻¹), which as expected is due to the adsorption of ions in the pores of the activated AlPO₄. The low values of the activation energy in both the cases suggests that the Cd²⁺ ion uptake is diffusion controlled by the ion exchange mechanism.

Table 1. Rate constants (K_u) and activation parameters for the kinetics data of Cd²⁺ ions sorption on non-activated AlPO₄ at pH 6

Temp. (K)	K _u × 10 ³ (min ⁻¹)	E _a (kJ mol ⁻¹)	ΔH [#] (kJ mol ⁻¹)	ΔS [#] (J K ⁻¹ mol ⁻¹)	ΔG [#] (kJ mol ⁻¹)
303	21.42		9.47	62.46	-18.92
313	24.64	11.99	9.38	63.49	-19.86
323	26.94		9.30	63.22	-20.41


Table 2. Rate constants (K_u) and activation parameters for the kinetics data of Cd²⁺ ions sorption on activated AlPO₄ at pH 6

Temp (K)	K _u × 10 ³ (min ⁻¹)	E _a (kJ mol ⁻¹)	ΔH [#] (kJ mol ⁻¹)	ΔS [#] (J K ⁻¹ mol ⁻¹)	ΔG [#] (kJ mol ⁻¹)
303	12.90		22.79	125.39	-37.97
313	19.58	25.31	22.70	125.84	-39.36
323	23.95		22.62	124.72	-40.26

Scheckel and Sparks (15) have suggested that the low values of the activation energy below 42 kJ mol⁻¹ points towards the diffusionaly controlled process of the sorption. The small values of the activation energy in case of the non-activated AlPO₄ indicates that the process is limited by the movement of the Cd²⁺ ion towards the external surface of the solid.

The net activation entropy (ΔS[#]) of the adsorption process is estimated using the Eyring reaction rate theory,

$$K_u = ed^2 \frac{KT}{h} e \frac{\Delta S^\neq}{R} e \frac{-Ea}{RT} \quad (5)$$

Figure 8. Plot of Arhenius equation for calculation of activation energy for Cd²⁺ ions on AlPO₄.

where d^2 is the distance of jump of the diffusing ion from one equilibrium position to another (10^{-15} cm^2), e the base of natural logarithm, R is the molar gas constant, T absolute temperature, and E_a the energy of activation. The values of $\Delta S^\#$ thus obtained are given in Tables 1, 2 which are positive and larger for the activated AlPO₄ showing the enhanced dehydration of the Cd²⁺ ions before they are able to enter the pores inside the solid. The positive values for both the solids indicate that the process is accompanied by a significant breaking of bonds and structural changes on account of the metal dehydration before they are sorbed by the solid. Similar conclusions about positive entropy are reported in the literature (16,17).

The enthalpy and free energy of activation are calculated using the following reaction:

$$\Delta H^\# = E_a - RT \quad (6)$$

$$\Delta G^\# = \Delta H^\# - T\Delta S^\# \quad (7)$$

The values of $\Delta H^\#$ and $\Delta G^\#$ thus calculated are listed in Tables 1, 2. The values of $\Delta H^\#$ in both the non-activated and activated AlPO₄ are positive while the $\Delta G^\#$ values are negative which shows the process of activated complex formation to be endothermic and spontaneous in nature. The values of $\Delta H^\#$ are positive and a small decrease in their magnitude is observed with the rise in temperature. The small positive values of $\Delta H^\#$ for non-activated AlPO₄ also indicates the process responsible for the uptake to be the ion exchange. The increase in the $\Delta H^\#$ values with activation shows that greater energy is required for the metal cation to enter inside the pores of the solid.

CONCLUSIONS

It can be concluded from the foregoing discussion that the mechanism of Cd²⁺ ions uptake on the non-activated AlPO₄ is the ion exchange with the H⁺ ions from the solid. By activating the solid at a high temperature i.e., 400°C, the mechanism changes into adsorption inside the pores of the solid, which has high activation parameters as compared to the non-activated AlPO₄.

REFERENCES

1. Martinez, C.E.; Motto, H.L. (2006) Solubility of lead, zinc and copper added to mineral soils. *Environmental Pollution*, 107: 153.
2. Bolto, B.A.; Pawlowski, L. (1987) *Wastewater Treatment by Ion Exchange*; E. and F. N. Spon Ltd: London.

3. Clearfield, A. (1988) Role of ion exchange in solid-state chemistry. *Chem. Rev.*, 88: 125.
4. Dorfner, L. (1991) *Ion Exchangers*; Walter de Gruyter: Berlin-New York.
5. Chen, X.; Wright, V.J.; Conca, L.J.; Peurrung, L.M. (1997) Effect of pH on heavy metal sorption on mineral apatite. *Environ. Sci. Technol.*, 31: 624.
6. Dyer, A.; Tahira, S.; Zaminm, M. (1997) Ion exchange of strontium and cesium into amorphous zirconium phosphate. *J. Mater. Chem.*, 7: 1895.
7. Suarez, M.; Garcia, J.R.; Rodriguez, J. (1984) Calometric determinations of H⁺/Na⁺ Ion exchange on α -titanium phosphate. *J. Phys. Chem.*, 88: 157.
8. Amphlett, C.B. (1964) *Inorganic Ion Exchangers*; Elsevier: Amsterdam, p. 84.
9. Wakamura, M.; Kandori, K.; Ishikawa, T. (2000) Surface structure and composition of calcium hydroxyapatite substituted with Al(III), La(III) and Fe(III) ions. *Colloids and Surfaces*, 164: 297.
10. Mustafa, S.; Naeem, A.; Murtaza, S.; Rehana, N.; Samad, H.Y. (1999) Comparative sorption properties of metal(III) phosphates. *J. Colloid Interf. Sci.*, 220 (1): 63.
11. Anthony, S.R.J.; Ellis, B.G. (1968) Chemical and physical properties of iron and aluminum phosphates and their relation to phosphorous availability. *Soil Sci. Soc. Amer. Proc.*, 32: 216.
12. Campelo, J.M.; Marinas, J.M.; Mendioroz, S.; Pajares, J.A. (1986) Texture and surface chemistry of aluminum phosphates. *J. Catal.*, 101: 484.
13. Kinniburgh, D.G.; Syres J.K.; Jackson, M.L. (1975) Specific adsorption of trace amount of calcium and strontium by hydrous oxides of iron and aluminium. *Soil Sci. Soc. Am. Proc.*, 39 (3): 464.
14. Mehmet, E.; Arzu, O. (2006) Kinetics and thermodynamics of the Cd(II) adsorption onto pyrite and synthetic iron sulphide. *Sep and Pur. Technol.*, 51: 240.
15. Scheckel, K.G.; Sparks, D.L.; (2001) *Soil. Sci. Soc. America Journal*, 65: 719.
16. Laidler, K.J. (1965) *Chemical Kinetics*, 2nd Ed.; McGraw-Hill Book Company, 215.
17. Mustafa, S.; Hussain, S.Y.; Naeem, A. (1992) Kinetics of ion exchange sorption of phosphate. *React. Kinet. Catal. Lett.*, 47: 125.